Shopping Cart

No products in the cart.

Reverse Percentage 11+ Maths Problem

Hi everyone. Welcome back to another eleven-plus journey video. This is Mohhi Dina Ahmed from Singapore Maths Academy. Today we’re diving into another percentage question – a challenging reverse percentage problem that many children often get stuck on or misunderstand, leading to mistakes.

So, let’s jump onto my iPad and work through this question together.


Understanding the Problem

The problem we’re looking at states:

In a sale, prices were reduced by 35%. The sale price of a computer was £884. Work out the normal price of the computer.


Visualising the Problem with a Bar Model

To understand and solve the problem, let’s represent it with a bar model. This helps us visualise the normal and sale prices more clearly.

Step 1: Represent the Normal Price

Firstly, we consider the normal price as 100%.

Maths question on computer sale price reduction.

In this bar model, the entire length represents 100% of the normal price.

Step 2: Show the Reduction

The price reduction is 35%. By removing 35% from the bar, we can indicate this reduction visually.

What we have left in our bar model represents the sale price.

Maths question about sale price reduction by 35%.

Step 3: Determine the Sale Price Percentage

The sale price remains as a portion of the normal price. Specifically:

  • Normal Price = 100%
  • Reduced by = 35%
  • Sale Price = 100% – 35% = 65%

So, the sale price is 65% of the original price.

Maths problem on calculating normal price of computer.

Solving the Reverse Percentage Problem

Given that the sale price is 65% of the normal price and the actual sale price is £884, let’s find the original normal price.

Step 1: Set Up the Equation

65% of the normal price equals £884.

Step 2: Find 1%

To find the normal price, we first need to determine what 1% of the normal price would be.

We calculate:

[ 65% of Normal Price = £884 ]

[ 1% of Normal Price =£884/ 65 ]

Step 3: Simplify the Calculation

Dividing by 65 can be tricky, so let’s look for an easier breakdown.

Potential approaches:

  • Divide by 5: [ {884}{5} = 176.8 ]
  • Divide by 13: [ {£884}{13} = 68 ]

By choosing the second method:

[ 884 \div 13 = 68 \ (\text{This represents 5% of the normal price}) ]

Step 4: Calculate 100%

If 5% is £68, then:

[ 10% = £68 \times 2 = £136 ]

[ 100% = £136 \times 10 = £1,360 ]

Thus, the normal price of the computer is £1,360.


Common Mistakes and Tips

Mistakes to Avoid

A common mistake students make is misinterpreting the percentage. They calculate 35% of the sale price (£884) and then add it to £884

This leads to a wrong answer. Remember:

“The sale price is 65% of the original price, not the other way round.”


Practice Makes Perfect

To avoid such mistakes, practice reverse percentage problems frequently. Search for “reverse percentage worksheets” online for more exercises.


Conclusion

I hope this explanation helps clarify how to tackle reverse percentage problems. If you have any questions or need further clarification, leave a comment below. If you found this helpful, please give a thumbs up or subscribe to our YouTube channel.

For additional tuition needs, feel free to contact us through Facebook or Instagram. We’d love to hear from you!


Take care, everyone!

11+ maths percentage problem solved step-by-step

Singapore Maths Academy YouTube Channel

Watch other FREE explanation videos from some of the top Grammar and Independent School Exam paper questions.

Purchase Our Online Bar Model Course

The Bar Model approach is a world-class strategy for problem-solving. Purchase this course to allow your child to gain the skills to master addition, subtraction, multiplication, and division multi-step word problems.